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Abstract. The paper deals with two problems of the ionization of a single quantum well formed
in a heterostructure.

In the first problem, the ionization is caused by an electromagnetic wave which has so low a
frequency that the number of electromagnetic quanta necessary for the ionization is much more
than unity. The electric field of the wave is oriented along the normal to the heterostructure
boundaries, and is assumed to be uniform on the scale of the well width. Analytical expressions
have been obtained to determine the multiphoton ionization probability of a rectangular well per
unit of time. It has been shown that plots of ionization probability versus well width depend
dramatically on whether the angular frequency of the field is larger or smaller than the inverse
characteristic time of the electron motion in the classically forbidden region. In the former case,
the ionization rate as a function of the well width at a fixed frequency (or as a function of the
field frequency at a fixed width) is characterized by two types of peculiarity. We discuss the
nature of these peculiarities.

The second problem is devoted to the ionization of a quantum well by an alternating electric
field superimposed on a strong dc electric field. This problem is investigated analytically for
a field frequency smaller than the inverse characteristic time of the electron motion through
a potential barrier. The dependences of the ionization probability on the well width and the
electric field amplitude are studied.

1. Introduction

The multiphoton process of ionization of atoms in strong electromagnetic fields has attracted
the attention of investigators for many years (see, for example, [1–6] and references therein).
The perturbation theory is not appropriate for calculating the ionization rate in this case.
Keldysh was the first to solve such a problem for atoms radiated by a strong laser field,
as early as 1964 [1]. He demonstrated that the frequency dependence of the multiphoton
ionization probability is determined by the parameter

γ = ω

ωt

= ωh̄κ

|eE | (1)

where ω and E are the angular frequency and the electric field amplitude of the wave,
respectively, ¯h is Planck’s constant,e is the electron charge, andκ−1 is the space-scale
characterizing the exponential decrease of the electron wave function at large distances
from the atomic nucleus. The quantityω−1

t can be considered as the characteristic time of
the electron motion in the classically forbidden region in the presence of the dc fieldE . At
low frequencies(γ � 1), the ionization is reduced to the tunnelling of an electron through
a slowly time-varying potential barrier. At high frequencies(γ � 1), the ionization can be
interpreted as the absorption of a large number of quanta. In the latter case, the probability
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2586 V Ya Demikhovskii and G A Vugalter

of absorbingn quanta is proportional to 1/γ 2n, i.e. it decreases abruptly with increasing
n (n is assumed to be larger than some threshold value). The Keldysh approach implies
that an alternating field does not practically affect the atomic ground state, but influences
essentially the free-electron motion. This motion is described by the function that is an
exact solution of the Schrödinger equation for an electron in a uniform alternating electric
field, rather than by a plane wave.

In some previous papers [2, 5, 6] one-dimensional models of atoms were treated in
order to understand the complicated nature of the ionization process. Meanwhile, there
exist natural objects whose ionization can be described by a one-dimensional model. These
are quantum wells in semiconductor heterostructures. Up to now the intersubband electron
transitions in quantum wells and the ionization processes due to a weak electromagnetic
field have been considered, if one photon is involved in the process and, therefore, only the
first order of the perturbation theory on the field amplitude is applicable [7, 8]. Below we
shall focus on the ionization of a quantum well formed in a heterostructure and affected
by a strong electromagnetic wave. The wave frequencyω is supposed to be so low that
the quantum energy ¯hω is smaller than the depth of the energy level of an electron in
the quantum well. The electric field of the wave is oriented along the normal to the
heterostructure boundaries. The field is assumed to be uniform which corresponds to the
much larger electromagnetic wavelength as compared to the width of the quantum well. We
shall investigate the ionization rate as a function of the well width and the wave frequency,
and point out the situation where the ionization is suppressed due to the interference of
electron waves released from the well. This ionization suppression has not been discussed
in previous papers.

Further on, we deal with the problem of the quantum well ionization by an alternating
electric field E(t) in the presence of a strong dc electric fieldE0 parallel to E(t).
This problem is urgent now, since, in particular, in photodetectors with quantum wells
a heterostructure exists simultaneously in the dc ‘pulling’ field and in the wave field [7].

We suppose the heterostructure temperature to be so low that two conditions hold: (i)
all electrons occupy the lowest energy level, and the states of the continuous spectrum are
free; (ii) the characteristic time between collisions of an electron with thermal phonons is
much larger than the characteristic time of the electron motion in the classically forbidden
region. The latter condition permits us to neglect the electron–phonon scattering and to
describe the behaviour of an electron by a Schrödinger equation.

In section 2 we shall derive the analytical expression for the ionization probability per
unit of time, when a rectangular quantum well is subjected to a uniform ac electric field.
In section 3 we shall analyse the expressions obtained in two limit cases (low frequency
and high frequency) and give numerical results. In section 4 we shall obtain the analytical
expression for the ionization probability of a rectangular quantum well placed in dc and ac
electric fields simultaneously.

2. The ionization probability

Let us consider the one-dimensional motion of an electron in a potential well in the presence
of an ac electric fieldE cosωt turned on att = 0 and directed along thex axis. The electron
wave function9(x, t) obeys the equation

i h̄
∂9

∂t
=

(
− h̄2

2m

∂2

∂x2
+ U(x) − eEx cosωt

)
9 (2)
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with the initial condition

9(x, 0) = 90(x)

wherem is the effective mass of the electron,U(x) is the potential energy of the well, and
90(x) is the wave function of an electron stationary state in the quantum well. In this paper
we assume thatm is independent ofx and thateE > 0. We restrict ourselves to the case of
the ground initial state of an electron in a rectangular wellU0 deep anda wide. It is well
known that in this case

90(x) =


C0 cos(kx) |x| < 1

2a

C0 cos

(
1

2
ka

)
exp

[
−κ

(
|x| − 1

2
a

)]
|x| > 1

2a
(3)

where

C0 =
√

κ√
1 + 1

2κa

k = 1

h̄

√
2m(U0 − |E0|) κ = 1

h̄

√
2m|E0|. (4)

E0 < 0 is the energy of the initial stationary state in the well. Everywhere below we
suppose that

h̄ω � |E0|. (5)

In order to find the wave function it is convenient to rewrite equation (2) in the integral
form and then to replace the wave function in the integral term by the unperturbed function

90(x) exp

(
− i

h̄
E0t

)
(see appendix A). This approximate procedure suggested in [2] implies that the condition
eEa � |E0| is satisfied and the overall loss of carriers is negligible over the timet of our
consideration. As has been shown in appendices A and B, for large positivex, t we have

9(x, t) ' iU0m

h̄

√
κ

1 + 1
2κa

∞∑
n>ν

1

pn

fn(pn) exp

{
i

h̄

[(
pn + eE

ω
sinωt

)
x

+(|E0| − nh̄ω)t + pneE
mω2

cosωt + e2E2

8mω3
sin 2ωt

]}
. (6)

Here

pn =
√

2mh̄ω(n − ν) (n > ν) (7a)

ν ≡ |E0|
h̄ω

(
1 + 1

2γ 2

)
(7b)

fn(pn) ' 1

2

[
sin(iκ + k)a/2

iκ + k
+ sin(iκ − k)a/2

iκ − k

] √
h̄ωγ

π |E0|
√

1 + γ 2

× exp

[
−|E0|

h̄ω

[
f (γ ) + p2

n

h̄2κ2
(Ar sinhγ − γ√

1 + γ 2
)

]]

×
[

exp

(
− ipnκ

ωmγ

√
1 + γ 2

)
+ (−1)n exp

(
ipnκ

ωmγ

√
1 + γ 2

)]
(8)

where

f (γ ) =
(

1 + 1

2γ 2

)
Ar sinhγ −

√
1 + γ 2

2γ
(9)
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is the function obtained by Keldysh [1] for the first time. The parameterγ is given by
equation (1) in whichκ is the quantity defined by equation (4). The quantitypn is the
momentum (averaged over the field period) of the electron released from the well after
absorbingn field quanta. The numberν determines the minimum electromagnetic quantum
number required for the ionization. Equation (6) is valid if the conditions

x � a

2
,

eE
mω2

,

√
h̄

2mω
(10a)

x

√
m

2h̄ω
� t � w−1 (10b)

are satisfied wherew is the ionization probability per unit of time (see equations (15a) and
(15b)). Conditions (10a) and (10b) do not contradict one another if, at least, the inequality

w � ω (10c)

holds. This inequality is natural because one expects thatt > 1/ω; hence the condition
wt � 1 means also thatw � ω. The condition of validity for equation (8) is given by
equation (5) ifγ & 1, and by the inequality√

eE
κ|E0| � 1 if γ � 1 (11)

(see appendix B).
By using function (6) one can readily calculate the electron current at large positivex

and t :

j (x, t) = − i h̄

2m

(
9∗ ∂9

∂x
− 9

∂9∗

∂x

)
. (12)

The x-independent part of this current, averaged over the period of the electromagnetic
field, is equal to

j+ ' U2
0mκ

h̄2(1 + 1
2κa)

∞∑
n>ν

1

pn

|fn(pn)|2. (13)

Obviously, the total electron current from the well is 2j+. This current determines the
ionization probabilityw per unit of time, namely

w = 2j+.

Each term in equation (13), multiplied by two, is the rate of then-quantum ionization. It
should be noted that the averaging procedure used for deriving equation (13) is relevant
because, according to inequality (10c), the characteristic time of the ionization is much
larger than the alternating-field period.

Substituting expression (8) into equation (13) and taking into account the fact that
according to the transcendental equation governing the electron spectrum in the quantum
well, the following relation holds:[

sin(iκ + k)a/2

iκ + k
+ sin(iκ − k)a/2

iκ − k

]2

= 2h̄2eκa

mU3
0

(U0 − |E0|)|E0| (14)

we can represent the ionization probability as

w = eκa

1 + 1
2κa

(
1 − |E0|

U0

)
wδ (15a)
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wδ ' 2
|E0|
h̄

√
3eE

2πκ|E0| e−2(|E0|/h̄ω)f (γ )

√
2γ 3

3π(1 + γ 2)

×
∞∑

n>ν

exp
(
−2

(
Ar sinhγ − γ /

√
1 + γ 2

)
(n − ν)

)
√

n − ν

×
[

1 + (−1)n cos

(
4

√
|E0|
h̄ω

(
1 + 1

γ 2

)
(n − ν)

)]
. (15b)

The quantitywδ is the rate of ionizing the well withU(x) proportional toδ(x) (see [2]).
It should be emphasized that formulas (8) and (15b) are valid if the inequality ¯hω � |E0|
is satisfied. This inequality contradicts the condition ¯hω > |E0| for the one-quantum
ionization. Consequently, equation (15b) does not describe the rate of the one-quantum
ionization in a weak electromagnetic field.

As we have mentioned in section 1, the characteristic timeτ between collisions of an
electron with thermal phonons should be much larger than the characteristic timeτf of the
electron motion in the classically forbidden region. In the quasiclassical approximation the
latter quantity can be estimated as

τf ∼ 1

ω
ln(

√
1 + γ 2 + γ ).

Thus, equations (15a) and (15b) are relevant at temperatures so low that the condition

τω � ln(
√

1 + γ 2 + γ ) (16)

holds. This condition evolves asτωt � 1, if γ � 1, and asτω � ln(2γ ), if γ � 1.

3. Discussion and numerical results

Let us analyse formulas (15a) and (15b). In the high-frequency limit (γ � 1), the terms
of the sum in equation (15b) decrease abruptly ifn increases. Therefore, it is sufficient to
employ only the largest term, the numbern of which is the closest one toν (let us designate
this number asnmin). As a result, we have

w ' eκa

1 + 1
2κa

(
1 − |E0|

U0

)
2

√
h̄ω|E0|
πh̄

×
(

eE
2h̄ωκ

)2nmin

exp

(
2nmin − |E0|

h̄ω

)
1√

nmin − |E0|/h̄ω

×
[

1 + (−1)nmin cos

(
4

√ |E0|
h̄ω

√
nmin − |E0|

h̄ω

)]
. (17)

According to the definition ofnmin one hasnmin − 1 < |E0|/h̄ω 6 nmin. The situation
where|E0| = nminh̄ω corresponds to the threshold of thenmin-quantum absorption.

The ionization rate in the high-frequency limit has some peculiarities. Let the well
depth, the ac-field amplitude and frequency be fixed. If the well width increases, the
quantity |E0| increases, too. As a consequence, the ratio|E0|/h̄ω tends tonmin, and the
ionization probability becomes proportional to(nmin − |E0|/h̄ω)−1/2 → ∞ if nmin is even,
and proportional to(nmin−|E0|/h̄ω)1/2 → 0 if nmin is odd. Thus, if a threshold corresponds
to evennmin, the ionization probability is infinite. And if a threshold corresponds to odd
nmin, this probability approaches zero. The singularity of the ionization rate at evennmin is
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connected with the singularity of the density of electron states in the one-dimensional case.
For oddnmin the ionization rate singularity is suppressed. We interpret this fact as follows.
If an electron absorbs a field quantum, the electron wave function changes its parity. Both
the ground state in a rectangular well and the lowest state of the continuous spectrum are
even; therefore, a transition between these two states is possible if the electron absorbs
an even number of the field quanta. The transitions accompanied by the absorption of an
odd number of quanta are forbidden. Hence, if the well width increases, the ionization
probability becomes equal in turn to infinity and zero at the thresholds.

Besides this, there exists a second type of peculiarity of the ionization probability as a
function of the well width. According to equation (17), the ionization probability equals
zero when the condition

4

√ |E0|
h̄ω

√
nmin − |E0|

h̄ω
=

{
π(2k − 1) k = 1, 2, . . . if nmin is even

2πk k = 1, 2, . . . if nmin is odd
(18)

is satisfied. Formally, under this condition the matrix element connecting the ground state
and the free state vanishes. The physical reason for this effect can be interpreted as follows.
The exponential functions in the last pair of square brackets in equation (8) are of the form
exp(±(i/h̄)pnx0) wherex0 ' h̄κ/mω. Hence, in accordance with equations (6) and (8), the
wave-function component with the momentumpn can be treated as a superposition of two
waves outgoing from two different points whose distance apart equals 2x0. If the ratio of
the distance 2x0 and the electron wavelength 2πh̄/pn is an integer at oddnmin or a half-
integer at evennmin (these conditions are expressed by equation (18)), the interference of
two partial waves leads to zero total amplitude of the electron wave with the momentumpn.
Thus, the second type of peculiarity of the ionization rate is connected with the interference
of two electron waves released from the well.

Strictly speaking, because of the restrictionw � ω we cannot state that, for some
parameters of the well and the field, the ionization rate tends to infinity. We also cannot
state that the ionization probability described by equation (17) is exactly equal to zero
because, in contrast to equations (15a) and (15b), formula (17) does not take into account
then-quantum ionization processes withn > nmin. Furthermore, electron energy levels in a
semiconductor have a finite width due to collisions. One can estimate the minimum value
of the quantity(nmin − ν)1/2 as (ωτ)−1/2 whereτ is the characteristic time of the electron
motion between collisions. According to inequality (16), the productωτ is very large, and
one can expect that the singularities of the ionization rate will manifest themselves.

Let us turn to the low-frequency limit (γ � 1). First of all, we separate the term with
nmin from the sum in equation (15b) because this term can be singular. In the remaining
sum we rewrite the exponential function as exp(− 2

3γ 3(n−ν)). This is a slow function ofn
for γ � 1. In contrast, the second term in the square brackets in equation (15b) oscillates
quickly if n changes, and we can omit this term when we calculate the sum overn. After
that, the summation fromn = nmin + 1 to n = ∞ can be replaced by the integration over
the variableξ = 2

3γ 3(n − ν). As a result, we have

w ' eκa

1 + 1
2κa

(
1 − |E0|

U0

)
2
|E0|
h̄

√
3eE

2πκ|E0| exp

(
−4

3

κ|E0|
eE

)

×
1 +

√
2γ 3

3π(nmin − ν)

[
1 + (−1)nmin cos

(
4

√
|E0|
h̄ωγ 2

(nmin − ν)

)] .

(19)



Multiphoton ionization of a quantum well 2591

According to equation (19), the ionization rate as a function of the well width or the field
frequency is singular at the points whereν = nmin for evennmin. The singularities are
connected with the second term in the braces. Sinceγ � 1, this term becomes crucial ifν
is very close tonmin. If we take into account a finite width of the electron energy levels, the
minimum value of the quantity(nmin − ν)1/2 can be estimated as(ωτ)−1/2 whereτ is the
characteristic time of the electron motion between collisions, introduced above. Therefore,
the maximum value of the singular term in the braces is of the order of√

γ 3

(nmin − ν)
∼ (γ 3ωτ)1/2.

For sufficiently smallγ , this quantity is much less than unity, and below we shall neglect
the second term in the braces. In this approximation the ionization rate does not depend
on ω.

In equation (19) the factor

exp

(
−4

3

κ|E0|
eE + κa

)
is none other than the quasiclassical transparency of the triangular barrier formed by the
well potential and the dc electric fieldE . This transparency is much smaller than unity (see
inequality (11)). The factor√

1

2πκ|E0|3eE

determines the part of the ac-field period where the barrier width is minimum and the
tunnelling is proceeding most effectively. This becomes evident if we compare the ionization
rate in the low-frequency limit (see equation (19)) and the ionization rate in the dc field
of magnitude equal to the ac-field amplitude (see equation (22) and the paragraph after
it). It is interesting that, on the one hand, equation (19) describes the electron tunnelling
from the well through the barrier varying in time. On the other hand, this equation
has been derived from equation (15b), according to which the ionization in the low-
frequency limit is an aggregate of a great number of multiphoton processes involving
nmin, nmin + 1, nmin + 2, ..., nmin + A/γ 3 photons, respectively, whereA is a constant
of the order of unity. The latter statement is a consequence of the fact that the contribution
of the n-photon process to the ionization rate is proportional to exp(− 2

3γ 3(n − ν)) (see the
paragraph above equation (19)).

We emphasize that equation (19) is valid in the frequency rangew � ω � eE/h̄κ.
The upper limit is defined by the conditionγ � 1. The left-hand inequality means that the
carrier population in the well does not change in essence during the field period.

Up to now we considered the electron transitions from the ground state of a quantum
well to the states of the continuous spectrum. If there are several levels in a well, it
is possible to obtain the probability of multiphoton ionization of theN th quantum state
(N = 0 corresponds to the ground state). It can be shown that for evenN , the ionization
probability is described by equations (15a) and (15b), in which |E0|, κ, γ, ν should be
replaced by|EN |:

κN = 1

h̄

√
2m|EN |tqsγN = 1

eE h̄ωκN νN = |EN |
h̄ω

(
1 + 1

2γ 2
N

)
respectively. IfN is odd, in addition to the replacements mentioned above, it is necessary
to substitute(−1)n+1 instead of(−1)n in equation (15b). It is necessary to have in mind
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that, when there are several levels in the well, our formulas for the ionization probability
are valid, if the transitions between the levels in the well are not resonant, i.e. the interval
between the levels, divided by ¯hω, is not an integer.

Figure 1. The ionization probability in the low-frequency limit versus the width of a well
0.3 eV deep. The amplitude of the alternating electric field equals 130 kV cm−1 (curve 1),
100 kV cm−1 (curve 2), 70 kV cm−1 (curve 3).

The expressions derived above are rather bulky. The explicit dependences of the
ionization probability on the well width and on the field amplitude and frequency are
plotted using equations (17) and (19) (without the second term in the braces in the latter
equation). We choose the parametersU0 = 0.3 eV andm = 0.07m0 (m0 is the free-electron
mass) which approximately correspond to the n-type AlxGa1−xAs/GaAs/Al xGa1−xAs
heterostructures. Figure 1 shows the dependencew(a) in the low-frequency limit (γ � 1),
when the ionization can be considered as the tunnelling through the slowly time-varying
barrier. In this case, the ionization probability does not explicitly depend on the frequency,
but the latter has to be much higher thanw . The electric field amplitude is 130 kV cm−1

(curve 1), 100 kV cm−1 (curve 2), and 70 kV cm−1 (curve 3). The dependence of the
ionization probability on the well width is a monotonic function. This is due to the fact that
the depth of the energy level and the scaleκ−1 of the wave-function localization are smooth
functions ofa. In the low-frequency limit, the largest values of the ionization probability
correspond to narrow wells, the barrier widths of which are comparatively small because of
the small depth of the energy level.

Figure 2 illustrates the dependencew(a) in the high-frequency limit (γ � 1). In the
calculationsE is taken to be equal to 70 kV cm−1, while ω/2π = 14 THz. In this case,
the dependencew(a) is sharply nonmonotonic. Two peculiarities at the pointsa ' 33 Å,
a ' 52 Å correspond to thresholds. The minimum number of quanta required for the
ionization changes from three to four at the pointa ' 33 Å, and from four to five at the
point a ' 52 Å. If the well width tends to 33Å from below, the minimum number of
quanta,nmin, is equal to three; therefore, in accordance with equation (17), the threshold
value of the ionization probability is zero. In contrast, at the pointa ' 52 Å the threshold
value of this probability tends to infinity. Since we use a logarithmic scale, in figure 2
we see two weak singularities. The peculiarity in the vicinity of the pointa = 48 Å is of
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Figure 2. The ionization probability in the high-frequency limit versus the width of a well
0.3 eV deep. The electric field amplitude and frequencyω/2π are 70 kV cm−1 and 14 THz,
respectively. The arrows with symbols 0 or∞ correspond to the widths at which the ionization
probability tends to 0 or∞, respectively, and at which the minimum number of quanta required
for the ionization changes by unity. The arrow above the curve corresponds to the width at
which the ionization probability tends to zero because of the interference of two electron waves
released from the well.

Figure 3. The ionization probability in the high-frequency limit versus the frequency of an
electric field. The well is 0.3 eV deep and 50Å wide. The field amplitude is 70 kV cm−1. The
arrows with symbols 0 or∞ correspond to the frequencies at which the ionization probability
tends to 0 or∞, respectively, and at which the minimum number of quanta required for the
ionization changes by unity. The arrows above the curve correspond to the frequencies at which
the ionization probability tends to zero because of the interference of two electron waves released
from the well.

different nature. The valuea ' 48 Å is a root of equation (18) atnmin = 4. This type
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of peculiarity has been named above as the second type and is due to the interference of
two electron waves released from the well. The dependence of the ionization rate on the
field frequency in the limitγ � 1 is depicted in figure 3. The effective electron mass
and the well depth are the same as in figures 1 and 2. The well width equals 50Å; the
field amplitude is 70 kV cm−1. The arrows under the curve point out the peculiarities
corresponding to thresholds of the absorption. Symbols 0 or∞ near an arrow mean that
at this point the ionization rate tends to zero or infinity, respectively. These arrows (from
the right to the left) correspond to the frequencies at which the minimum quantum number
required for the ionization changes from 2 to 3, from 3 to 4, and so on. The arrows above
the curve correspond to the points where the ionization is suppressed due to the interference
of the electron waves.

In order to evaluate the efficiency of the multiphoton ionization, let us suppose that the
electron concentration in the well isns = 1012 cm−2. For the parametersU0 = 0.3 eV,
m = 0.07m0, a ' 40 Å, E = 70 kV cm−1, ω/2π = 14 THz we havew ' 1010 s−1 (see
figure 2). Consequently, the number of electrons outgoing from the well per unit of time
equalsnsw ' 1022 s−1 cm−1. The number of electromagnetic quanta incident upon a unit
of the sample surface per unit of time is of the order of

Nph ∼ 1

8πh̄ω
c
√

εE2

where c is the light velocity, andε is the dielectric permeability of the semiconductor.
In our example we findNph ∼ 2.6 × 1027 s−1 cm−1 if ε = 12.5. Thus, the efficiency
Q = nsw/Nph is approximately equal to 3.8 × 10−6. If in our example we vary only the
electric field amplitudeE , the efficiencyQ will be described by the formula

Q ∼ 3.8 × 10−6

( E
70

)6

whereE is expressed in kV cm−1.
We have considered two limit cases—the low-frequency and the high-frequency one.

The typical crossoverωcr between low and high frequencies is determined by the condition
γ ∼ 1, i.e.

ωcr ∼ eE√
2m|E0|

.

If we suppose the electron effective mass to equal 0.07m0, the depth and the width of a
rectangular well to be 0.3 eV and 50Å, respectively, we can find that the ground-state energy
in the well isE0 ' −0.21 eV. Therefore, forE = 70 kV cm−1 we haveωcr/2π ∼ 2.8 THz.

4. Ionization of a quantum well by dc and ac electric fields

Now let us consider the ionization processes, when a quantum well is placed in dc and ac
uniform electric fields simultaneously. The fields are supposed to be parallel and directed
along thex axis. We restrict ourselves to the case of sufficiently low frequencies, where the
characteristic time of the electron motion in the classically forbidden region is much less
than the period of an ac electromagnetic field. First we calculate the ionization probability
in the dc fieldE0. This problem was investigated numerically in [9], and we perform an
analytical solution. The wave function of an electron tunnelling from a rectangular potential
well in the dc fieldE0 is found in appendix C. For large positivex, t we have (eE0 is assumed
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to be positive)

9(x, t) ' U0m
3/4

h̄3/2 4
√

2eE0

√
1 + 1

2κa

[
sin(iκ + k)a/2

iκ + k
+ sin(iκ − k)a/2

iκ − k

]
e−2|E0|κ/3eE0

× 1
4
√

x − (1/eE0)|E0|
exp

{
i
π

4
− i

E0

h̄
t + i

2

3h̄

√
2meE0

(
x − |E0|

eE0

)3/2
}

.

(20)

The conditions of validity of this equation are

eE0a � |E0| wt � 1 (21a)

t �
√

2m

eE0κ

√
eE0

|E0|κ � 1 (21b)

√
h̄

4
√

2meE0(x − (1/eE0)|E0|)3/4
� 1 (21c)

wherew is the ionization probability per unit of time (see equation (22)). Conditions (21a)
and (21b) for t do not contradict one another if the inequality

w �
√

eE0κ

2m

is satisfied. It should be emphasized that equation (20) cannot be derived from equation (6)
because conditions (10a) and (10b) cannot be satisfied for any finitex, t andω = 0.

Substituting equation (20) into equation (12), we can find the particle current from the
well and, therefore, the ionization probabilityw per unit of time, because this probability
coincides with the electron current from the well. Thus,

w ' eκa

1 + 1
2κa

(
1 − |E0|

U0

)
2
|E0|
h̄

e−4|E0|κ/3eE0. (22)

By consideringa → 0, U0 → ∞, we obtain the ionization probability of aδ-function-like
well.

Note that the ionization probability in the low-frequency limit (see equation (19)) differs
from that in the dc field of magnitude equal to the ac-field amplitude (see equation (22) for
E0 = E) by the factor√

1

2πκ|E0|3eE .

As we have mentioned in section 3, this factor determines the part of the ac-field period
where the barrier is minimum and the tunnelling is proceeding most effectively.

Now we are able to consider the ionization process produced by an ac field superimposed
on a dc field—i.e. when the total electric field equalsE0 + E cosωt . We shall confine our-
selves to the case where the ac-field frequency is low ((1/eE0)ωh̄κ � 1) and the amplitude
of this field does not exceed the dc field (under the latter condition the particle current runs
in one direction). Since the process that we consider is quasistatic, the ionization probability
can be calculated by replacingE0 by E0 + E cosωt in equation (22) and by averaging this
expression over the ac-field period. This procedure means thatω � w. If the ac-field
amplitude obeys the inequality

1

3e(E0 + E)2
2|E0|κE � 1 (23)
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then the steepest-descent method [10] can be used in order to calculate the ionization rate
averaged over the ac-field period. As a result, we find

w ' eκa

1 + 1
2κa

(
1 − |E0|

U0

)
2
|E0|
h̄

exp

(
− 4|E0|κ

3e(E0 + E)

) √
3e(E0 + E)2

8π |E0|κE . (24)

We emphasize that under condition (23) the ionization rate in dc and ac fields (see
equation (24)) is markedly less than the ionization rate in the dc fieldE0+E . The reason for
this difference is as follows. Equation (23) means qualitatively that the ac-field amplitude
is sufficiently large and the total electric field changes markedly between valuesE0 − E and
E0 + E . The ionization rate depends sharply on the total field. At those moments when the
ac and dc fields are antiparallel, the ionization rate is much less than at the moment when the
ac field is a maximum and parallel to the dc field. Therefore, the ionization rate averaged
over the ac-field period is essentially less than the ionization rate in the fieldE0 + E .

Figure 4. The ionization probability versus the width of a well 0.3 eV deep in the dc electric
field of 100 kV cm−1 for three amplitudes of an ac low-frequency field: 70 kV cm−1 (curve 1),
50 kV cm−1 (curve 2), 30 kV cm−1 (curve 3).

The dependence of the ionization probability on the well width is represented in figure 4
for one value of the dc field and for three amplitudes of the ac field. The effective electron
mass and the well depth are the same as in section 3. As can be seen from figure 4, at fixed
values ofE0 andE , the ionization probability decreases monotonically with the increase of
the well width. This is connected with the sinking of the energy level and, therefore, with
the increase of the effective thickness of the barrier. The ionization probability essentially
depends on the ac-field amplitude. The larger the well width is, the stronger this dependence
is. Figure 5 shows the dependence of the ionization probability on the ac-electric-field
amplitude for two fixed values of the dc field and for a constant width of the well. One
can see, in particular, that the ionization probability dependence on the ac-field amplitude
becomes less pronounced, if the dc field increases. When obtaining numerical results for
figures 4 and 5, we did not verify whether condition (23) was satisfied, and we did not
use the approximate equation (24), but replacedE0 by E0 + E cosωt in equation (22) and
numerically averaged this expression over the period.
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Figure 5. The ionization probability versus the amplitude of a low-frequency ac electric field for
a well 0.3 eV deep and 40̊A wide. The dc field equals 150 kV cm−1 (curve 1) and 100 kV cm−1

(curve 2).

5. Conclusion

We have derived analytical expressions for the multiphoton ionization probability of a
rectangular quantum well in an ac electromagnetic field polarized perpendicularly to the
well boundaries. The ionization of the ground state, as well as the ionization of higher
energy levels, is considered. It has been shown that the qualitative behaviour of the
ionization probability as a function of the well width and the ac-field amplitude and
frequency is determined by the parameterγ equal to the product of the field frequency
and the characteristic time of the electron motion in the classically forbidden region. At
high frequencies(γ � 1), the dependence of the ionization probability on the well width,
as well as on the field frequency, is essentially nonmonotonic. The peculiarities of this
dependence are classified and discussed. In the low-frequency limit(γ � 1), the ionization
probability can be treated as the averaged (over the ac-field period) probability of the
tunnelling through the potential barrier which is varying in time. A simple analytical
expression for this probability has been obtained, and the magnitude of the effect has been
estimated.

The problem of the quantum well ionization in an ac low-frequency electric field
superimposed on a dc electric field has been solved analytically. The dependence of the
ionization probability on the ac-field amplitude and the dc-field magnitude is discussed. It
has been shown that this probability decreases monotonically with the increase of the well
width.
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Appendix A. Solution of the Schr̈odinger equation

Equation (2) with the initial condition9(x, 0) = 90(x), where90(x) is the wave function
of the electron stationary state in the quantum well, can be rewritten in the integral form [2]

9(x, t) =
∫ +∞

−∞
G(x, x ′, t, 0)90(x

′) dx ′

+ 1

i h̄

∫ +∞

−∞
dx ′

∫ t

0
dt ′ G(x, x ′, t, t ′)U(x ′)9(x ′, t ′). (A1)

HereG(x, x ′, t, t ′) is the Green function defined by the equation(
i h̄

∂

∂t
+ h̄2

2m

∂2

∂x2
+ eEx cosωt

)
G(x, x ′, t, t ′) = i h̄ δ(t − t ′) δ(x − x ′). (A2)

In the momentum representation, equation (A2) is reduced to that in the first-order partial
derivatives. Its exact solution obtained by the method of characteristics is

G(x, x ′, t, t ′) = 2(t − t ′)
∫ +∞

−∞

dp0

2πh̄
exp

{
i

h̄
[p(t)x − p(t ′)x ′] − i

h̄

∫ t

t ′

p2(τ )

2m
dτ

}
(A3)

wherep(t) = p0 + (eE/ω) sinωt, 2(t > 0) = 1 and2(t < 0) = 0.
The first term in the right-hand side of equation (A1) describes the quick diffusion of

the initial wave function in the absence of the well. As we shall see below, the second
term in the right-hand side of equation (A1) gives the value of the electron current running
from the well which is not decreasing in time. Thus, only the second term in the right-hand
side of equation (A1) will be of interest to us. Assuming the overall loss of carriers to be
negligible over the timet of our consideration, i.e.wt � 1 (w is the ionization probability
per unit of time), we suppose

9(x ′, t ′) ' 90(x
′) exp

(
− i

h̄
E0t

′
)

in the right-hand side of equation (A1). If we take into account expression (3) and fulfil
the integration with respect tox ′ in equation (A1), we obtain for a rectangular well centred
at x = 0

9(x, t) ' iU0

2πh̄2

√
κ

1 + 1
2κa

∫ +∞

−∞
dp0 exp

[
i

h̄
p(t)x − i

h̄

(
p2

0

2m
t + e2E2

4mω2

(
t − sin 2ωt

2ω

)

− p0eE
mω2

cosωt

)] ∫ t

0
dt ′ exp

[
i

h̄

(
|E0| + p2

0

2m
+ e2E2

4mω2

)
t ′
]

×
{
g(ωt ′) exp

[
− i

h̄

(
p0eE
mω2

cosωt ′+ + e2E2

8mω3
sin 2ωt ′

)]}
(A4)

where

g(ωt ′) = sin

(
p0

h̄
+ eE

h̄ω
sinωt ′ + k

)
a

2

/(
p0

h̄
+ eE

h̄ω
sinωt ′ + k

)
+ sin

(
p0

h̄
+ eE

h̄ω
sinωt ′ − k

)
a

2

/(
p0

h̄
+ eE

h̄ω
sinωt ′ − k

)
. (A5)

The function in the braces in equation (A4) is periodic int ′ with a period of 2π/ω and can
be represented as the Fourier series

+∞∑
−∞

fn(p0)e
−inωt ′ (A6)
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with the coefficients defined by the expression

fn(p0) = 1

2π

∫ π

−π

dz g(z) exp

[
i

(
nz − p0eE

h̄mω2
cosz − e2E2

8h̄mω3
sin 2z

)]
. (A7)

The variablez = ωt ′ is introduced here. The coefficientsfn(p0 = pn) (the quantitypn is
defined by equation (7a)) are of great importance. We calculate them in appendix B. Let us
substitute series (A6) into equation (A4) and integrate the expression obtained with respect
to t ′. We find

9(x, t) = U0

2πh̄

√
κ

1 + 1
2κa

∫ ∞

−∞
dp0

∞∑
n=−∞

fn(p0) exp

[
i

h̄

[(
p0 + eE

ω
sinωt

)
x

+ (|E0| − nh̄ω)t + p0eE
mω2

cosωt + e2E2

8mω3
sin 2ωt

]]
× 1

p2
0/2m + |E0| + e2E2/4mω2 − nh̄ω

×
[

1 − exp

(
−i

t

h̄

(
p2

0

2m
+ |E0| + e2E2

4mω2
− nh̄ω

))]
. (A8)

It can be shown that at larget (t � 2h̄m/pn
2 ∼ 1/ω, t � (m/pn)(x + eE/mω2) ∼√

m/2h̄ω(x + eE/mω2)) the latter exponential function in equation (A8) oscillates quickly
as a function ofp0, does not essentially influence the integral overp0 and can be omitted.
After that the integration can be carried out with the help of the theory of residues. When
calculating the integral, one should bear in mind that electrons move only away from the well
at large distances. Therefore, for large positivex (see inequalities (10a)) the contribution
to integral (A8) is made by the polespn, while for large negativex it is by the poles−pn.
As a result, we obtain equation (6). Taking into account inequalities (10a), one can see that
the restrictions ont , given above, are reduced to conditions (10b).

Appendix B. Calculation of the coefficients of (A7)

The replacement of the variableζ = sinz in equation (A7) enables us to represent the
coefficientfn(pn) as a contour integral in the complex planeζ :

fn(pn) = 1

2π

∮
C

dζ√
1 − ζ 2

exp(F (ζ ))g1(ζ ) (B1)

where

F(ζ ) = i

[
n arcsinζ − pnκ

ωmγ

√
1 − ζ 2 − h̄κ2ζ

4mωγ 2

√
1 − ζ 2

]
(B2)

g1(ζ ) = sin

(
pn

h̄
+ κ

γ
ζ + k

)
a

2

/ (
pn

h̄
+ κ

γ
ζ + k

)
+sin

(
pn

h̄
+ κ

γ
ζ − k

)
a

2

/ (
pn

h̄
+ κ

γ
ζ − k

)
. (B3)

The integration contourC surrounds the slit made between the pointsζ = −1 andζ = +1.
The function

√
1 − ζ 2 is assumed to be positive at the upper edge of the slit.

The parameter ¯hκ2/4mωγ 2 is the product of|E0|/h̄ω and 1/2γ 2. The first factor is
much larger than unity for multiphoton processes. Ifγ � 1, the function eF(ζ ) oscillates
quickly along the contourC, and we can use the steepest-descent method [10] to calculate
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the integral (B1). Moreover, it turns out that we can calculate this integral for an arbitrary
value ofγ in the same way.

Let us assume that the functiong1(ζ ) varies more slowly compared to the function eF(ζ ).
This is possible if the electric field amplitude is not very large, namely, eEa � |E0|. In this
case, the saddle pointsζ0 can be found from the equationF ′(ζ0) = 0, which is equivalent
to

ζ 2
0 + 2

pnγ

h̄κ
ζ0 + 2mωγ 2

h̄κ2
n − 1

2
= 0. (B4)

The roots of this equation are

ζ±
0 = ±iγ − pnγ

h̄κ
. (B5)

We transform the integration contourC into a contour which crosses the saddle points. By
expandingF(ζ ) in a power series near each saddle point, retaining the terms with powers
not larger than two, and using the formulas of the steepest-descent method [10], we obtain

fn(pn) ' g1(ζ
+
0 )eF(ζ+

0 )√
−2πF ′′

0 (ζ+
0 )

√
1 − (ζ+

0 )2
− g1(ζ

−
0 )eF(ζ−

0 )√
−2πF ′′

0 (ζ−
0 )

√
1 − (ζ−

0 )2
. (B6)

When deriving expression (B6), we implied that the effective intervals of integration in
the steepest-descent method

|ζ − ζ±
0 | ∼

√
2|F ′′(ζ±

0 )|−1

were rather small, and we could omit the terms of order higher than|ζ − ζ±
0 |2. Using the

estimate
1

2!
|F ′′(ζ±

0 )(ζ − ζ±
0 )2| � 1

3!
|F ′′′(ζ±

0 )(ζ − ζ±
0 )3|

and supposingpn = 0 here (the estimates ofpn are given below), we find the condition of
validity for equation (B6):

1

3γ
|ζ − ζ±

0 | ∼ 1

3

√√
1 + γ 2

γ

h̄ω

|E0| � 1. (B7)

If γ & 1, inequality (B7) evolves as

1

3

√
1

|E0|h̄ω � 1

and is satisfied due to condition (5) for multiphoton processes. Ifγ � 1, expression (B7)
changes into

1

3

√
1

|E0|γ h̄ω = 1

3

√
1

κ|E0|eE � 1.

Thus, if γ � 1, condition (5) is insufficient and inequality (11) must be satisfied.
Let us transform equation (B6). As one can see from the final result (equation (8)),

the coefficientfn(pn) decreases exponentially ifpn increases. Ifγ & 1, the characteristic
values of the ratiopn/h̄κ (i.e. the values at whichfn(pn) differs markedly from zero) do
not exceed a quantity of the order of

√
(1/|E0|)h̄ω. Obviously, for multiphoton processes

we can supposepn/h̄κ � 1. This inequality permits us to expand the exponentsF(ζ±
0 ) in

power series with respect topn, neglecting all the terms of order higher thanp2
n. Besides
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this, in all factors of equation (B6), except the factors eF(ζ±
0 ), we can considerpn = 0. As

a result, we obtain equation (8). Ifγ � 1, the parameterpnγ /h̄κ appears instead of the
parameterpn/h̄κ which was essential in the previous case. According to the final result
(equation (8)), the characteristic values of the ratiopnγ /h̄κ are of the order of√

1

|E0|γ h̄ω =
√

1

κ|E0|eE .

Taking into account inequality (11), we can supposepnγ /h̄κ � 1 and repeat the same
approximate procedure as was used above. Hence, we obtain equation (8) again.

Appendix C. The wave function of an electron, tunnelling from a rectangular
potential well in a dc electric field

The wave function of an electron tunnelling from a rectangular potential well subjected
to a dc electric field can be found by using the same procedure as in appendix A up to
equation (A5), but the limitω → 0 should be taken andE should be replaced byE0. As a
result, instead of equation (A4) we have

9(x, t) ' iU0

2πh̄2

√
κ

1 + 1
2κa

∫ +∞

−∞
dp0 exp

(
i

h̄
(p0 + eE0t)x − i(p0 + eE0t)

3

6h̄meE0

) ∫ t

0
dt ′ eP(t ′)

×
[

sin
(
(p0 + eE0t

′)/h̄ + k
)
a/2

(p0 + eE0t ′)/h̄ + k
+ sin

(
(p0 + eE0t

′)/h̄ − k
)
a/2

(p0 + eE0t ′)/h̄ − k

]
(C1)

where

P(t ′) = i

6h̄meE0
(p0 + eE0t

′)3 + i

h̄
|E0|t ′. (C2)

First we calculate the integral overt ′. At sufficiently larget (see below), the exponential
function in this integral oscillates quickly and we can use the steepest-descent method [10].
If an electric field is not very strong, such that the inequalityeE0a � |E0| is satisfied (eE0

is assumed to be positive), the expression in the square brackets in equation (C1) varies
much more slowly compared to the exponential function. In this case, the saddle points in
the complex planet ′ are determined by the exponential function. They are the roots of the
equation dP(t ′)/dt ′ = 0 and can be written as

t ′± = 1

eE0
(−p0 ± i h̄κ). (C3)

Since |expP(t ′+)| � |expP(t ′−)|, the contour of integration overt ′ should be deformed
so as to crosst ′+ (in accordance with the steepest-descent method). Note that the saddle
point t ′+ contributes to the integral if 0< Ret ′+ < t . This condition reduces the region of
integration overp0 in equation (C1) to the interval(−eE0t) < p0 < 0. Let us return to
the integration overt ′. Expanding the functionP(t ′) in a power series near the pointt ′+,
omitting the term proportional to(t ′ − t ′+)3 and using the standard formulas [10], we obtain

9(x, t) ' iU0
√

m

h̄2√2πeE0

√
1 + 1

2κa

×
[

sin(iκ + k)a/2

iκ + k
+ sin(iκ − k)a/2

iκ − k

]
e−2|E0|κ/3eE0

∫ 0

−eE0t

dp0 eQ(p0) (C4)
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where

Q(p0) = i

h̄
(p0 + eE0t)x − i(p0 + eE0t)

3

6h̄meE0
− i h̄κ2p0

2meE0
. (C5)

Expression (C4) is valid, if the next two conditions hold: the effective integration interval

|t ′ − t ′+| ∼
√

2

∣∣∣∣d2P(t ′+)

(dt ′)2

∣∣∣∣−1

=
√

2m(eE0κ)−1

is essentially less than the total integration intervalt , and the effective interval is small
enough that we would be able to omit the term proportional to(t ′ − t ′+)3. These conditions
are expressed by inequalities (21b).

Let us turn to the integral overp0 in equation (C4). In order to take it we use the
steepest-descent method once again. The saddle points yielded by the equation dQ/dp0 = 0
are described by the expression

p±
0 = −eE0t ±

√
2meE0

(
x − 1

eE0
|E0|

)
. (C6)

Since the subject of our interest is the wave function determining the electron current at
large positivex, we assumex > (1/eE0)|E0|. In this case, the saddle points (C6) lie on the
real axis of the complex planep0, but only p+

0 belongs to the integration interval. Taking
into account that

d2Q

dp2
0

(p+
0 ) = − i

√
2

h̄
√

meE0

√
x − 1

eE0
|E0|

and using the standard technique of the steepest-descent method, for large positivex we
find the wave function (20). Analysing the conditions under which the integral overp0 can
be taken by the steepest-descent method (see the paragraph after equation (C5)), we obtain
inequality (21c).
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